Using the DCM with MODBUS

Introduction

How Does the DCM work with MODBUS?

The DL205 DCM can be used as a slave interface to a network using the MODBUS RTU protocol. To use the DCM with MODBUS, your host software must send a MODBUS function code and a MODBUS address to specify a PLC memory location that is understood by the DCM.

Host sends a MODBUS request...

It would be quite difficult for us to discuss all of the ins and outs of MODBUS in this document. Instead, our goal with this Appendix is to:

- provide a quick overview of MODBUS Data Types and Function Codes.
- show you how to determine the proper MODBUS address necessary to allow your host software to access various memory locations in the DL205 system.

One key point to remember is that not all host software packages using MODBUS drivers operate exactly the same way. That is, there a couple of different ways to achieve the same result, especially when it comes to specifying the address for the PLC memory location you need. *Therefore, it is important that you follow the instructions for your particular software package or network master.*

MODBUS Function Codes Supported

Your host software package reads or writes information by sending a MODBUS function code to the DCM. The following table provides a description of the MODBUS function codes supported by the DL205 DCM.

MODBUS Code	Function	DL205 Data Types Available
01	Read a group of coils	Y, CR, T, CT
02	Read a group of inputs	X, SP
05	Set / Reset a single coil	Y, CR, T, CT
15	Set / Reset a group of coils	Y, CR, T, CT
03, 04	Read a value from one or more registers	V
06	Write a value into a single register	V
16	Write a value into a group of registers	V

NOTE: The maximum MODBUS secondary address supported by the DCM is 60 (5A hex).

Supported

MODBUS Data Types You are probably accustomed to seeing data types like X input, Y output, C control relay, V memory data registers, etc. for the various types of memory in a DL205 system. For example, if you need to know the status of Y12, then you ask for Y12. MODBUS does not use these same data types, so you have to determine which MODBUS data type corresponds to the PLC memory location that you need. The following table will help.

DL205 Memory Type	Quantity ¹ (Decimal)	PLC Range (Octal)	Corresponding MODBUS Data Type
Inputs (X)	320	X0 – X477	Input
Special Relays (SP)	144	SP0 – SP137 SP540 – SP617	Input
Outputs (Y)	320	Y0 – Y477	Coil
Control Relays (CR)	256	C0 – C377	Coil
Timer Contacts (T)	128	T0 – T177	Coil
Counter Contacts (CT)	128	CT0 – CT177	Coil
Stage Status Bits (S)	512	S0 – S777	Coil
Timer Current Values (V)	128	V0 – V177	Input Register
Counter Current Value (V)	128	V1000 – V1177	Input Register
V Memory, user data (V)	1024	V2000 – V3777	Holding Register
V Memory, user data (V) Non–volatile	256	V4000 – V4377	Holding Register
V Memory, system (V)	106	V7620 – V7737 V7746 – V7777	Holding Register

Determining the MODBUS Address

There are typically two ways that most host software packages allow you to specify a PLC memory location. These are:

- By specifying the MODBUS data type and address
- By specifying a MODBUS address only.

If Your Host Software Requires the Data Type and Address... Many host software packages allow you to specify the MODBUS data type and the MODBUS address that corresponds to the PLC memory location. This is the easiest method, but not all packages allow you to do it this way. The various MODBUS data types were presented earlier, but they have been included again in the following table.

The actual equation used to calculate the address depends on the type of PLC data you are using. The PLC memory types are split into two categories for this purpose.

- Discrete X, SP, Y, CR, S, T (contacts), C (contacts)
- Word V, Timer current value, Counter current value

In either case, you basically just convert the PLC octal address to decimal and add the appropriate MODBUS address (if required). The table below shows the exact equation used for each group of data.

DL205 Memory Type	QTY ¹ (Dec.)	PLC Range (Octal)	MODBUS Address Range	MODBUS Data Type	
For Discrete Data Types	Convert	PLC Addr. to Dec.	+ Start of Range	+ Data Type	
Inputs (X)	320	X0 – X477	2048 – 2367	Input	
Special Relays (SP)	144	SP0 – SP137 SP540 – SP617	3072 – 3167 3280 – 3471	Input	
Outputs (Y)	320	Y0 – Y477	2048 – 2367	Coil	
Control Relays (CR)	256	C0 – C377	3072 – 3551	Coil	
Timer Contacts (T)	128	T0 – T177	6144 – 6271	Coil	
Counter Contacts (CT)	128	CT0 – CT177	6400 – 6527	Coil	
Stage Status Bits (S)	512	S0 – S777	5120 – 5631	Coil	
For Word Data Types	Convert	PLC Addr. to Dec.	+	Data Type	
Timer Current Values (V)	128	V0 – V177	0 – 127	Input Register	
Counter Current Values (V)	128	V1000 – V1177	512 – 639	Input Register	
V Memory, user data (V)	1024	V2000 – V3777	1024 – 2047	Holding Register	
V Memory, user data (V) non–volatile	256	V4000 – V4377	2048 – 2303	Holding Register	
V Memory, system (V)	106	V7620 – V7737 V7746 – V7777	3984 - 4063 4070 - 4095	Holding Register	

Example 1: V2100 Find the MODBUS address for User V F location V2100.

- 1. Find V memory in the table.
- 2. Convert V2100 into decimal (1088).
- 3. Use the MODBUS data type from the table.

PLC Address (Dec.) + Data Type

V2100 = 1088 decimal 1088 + Hold. Reg. = **Holding Reg. 1088**

1										
	Timer Current Values (V)	128	VO	-	V177	0	-	127 \		Input Register
	Counter Current Values (V)	128	V1000	-	V1177	512	-	639	\langle	Input Register
	V Memory, user data (V)	1024	V2000	-	V3777	1024	-	2047	$ \land$	Holding Register

Example 2: Y20

2: Y20 Find the MODBUS address for output Y20.

- 1. Find Y outputs in the table.
- 2. Convert Y20 into decimal (16).
- 3. Add the starting address for the range (2048).
- 4. Use the MODBUS data type from the table.

PLC Addr. (Dec) + Start Addr. + Data Type

Outputs (Y)

Control Relays (CR)

Example 3: T10 Current Value Find the MODBUS address to obtain the current value from Timer T10.

- 1. Find Timer Current Values in the table.
- 2. Convert T10 into decimal (8).
- 3. Use the MODBUS data type from the table.

PLC Address (Dec.) + Data Type

T10 = 8 decimal

8 + Input Reg. = Input Reg. 8

44 + 3072 + Coil = **Coil 3116**

Timer Current Values	; (V)	128	VO	-	V177	0	-	127	X	Input	Register
Counter Current Valu	es (V)	128	V1000	-	V1177	512	-	639		Input	Register
		<u> </u>									

Example 4: C54Find the MODBUS address for Control Relay
C54.PLC Addr. (Dec) + Start Addr. +Data Type
C54 = 44 decimal

- 1. Find Control Relays in the table.
- 2. Convert C54 into decimal (44).
- 3. Add the starting address for the range (3072).
- 4. Use the MODBUS data type from the table.

1	1	1		
Outputs (Y)	320	YO - Y477	2048 - 2367	Çoil
Control Relays (CR)	256	C0 - C377	(3072) - 3551	Coil
	Laco I	TO 7477	0111 0071	10.2

ONLY

If Your Host Software Some host software packages do not allow you to specify the MODBUS data type and Requires an Address address. Instead, you specify an address only. This method requires another step to determine the address, but it's still fairly simple. Basically, MODBUS also separates the data types by address ranges as well. So this means an address alone can actually describe the type of data and location. This is often referred to as "adding the offset". One important thing to remember here is that two different addressing modes may be available in your host software package. These are:

- 484 Mode
- 584/984 Mode

We recommend that you use the 584/984 addressing mode if your host software allows you to choose. This is because the 584/984 mode allows access to a higher number of memory locations within each data type. If your software only supports 484 mode, then there may be some PLC memory locations that will be unavailable. The actual equation used to calculate the address depends on the type of PLC data you are using. The PLC memory types are split into two categories for this purpose.

- Discrete X, GX, SP, Y, CR, S, T (contacts), C (contacts)
- Word V, Timer current value, Counter current value

In either case, you basically just convert the PLC octal address to decimal and add the appropriate MODBUS addresses (as required). The table below shows the exact equation used for each group of data.

DL205 Memory Type	QTY ¹ (Dec.)	PLC Range (Octal)	MODBUS Address Range	484 Mode Address	584/984 Mode Address	MODBUS Data Type
For Discrete Data Types .	Conve	rt PLC Addr. to Dec	- Start of Range	+ Appropriat	te Mode Add	ress
Inputs (X)	320	X0 – X477	2048 – 2367	1001	10001	Input
Special Relays (SP)	144	SP0 – SP137 SP540 – SP617	3072 – 3167 3280 – 3471	1001	10001	Input
Outputs (Y)	320	Y0 – Y477	2048 – 2367	1	1	Coil
Control Relays (CR)	256	C0 – C377	3072 – 3551	1	1	Coil
Timer Contacts (T)	128	T0 – T177	6144 – 6271	1	1	Coil
Counter Contacts (CT)	128	CT0 – CT177	6400 – 6527	1	1	Coil
Stage Status Bits (S)	512	S0 – S777	5120 – 5631	1	1	Coil
For Word Data Types	Convert	PLC Addr. to Dec.	+	Appropriate Mode Address		
Timer Current Values (V)	128	V0 – V177	0 – 127	3001	30001	Input Reg
Counter Current Values (V)	128	V1000 – V1177	512 – 639	3001	30001	Input Reg
V Memory, user data (V)	1024	V2000 – V3777	1024 – 2047	4001	40001	Hold Reg.
V Memory, user data (V) non–volatile	256	V4000 – V4377	2048 – 2303	4001	40001	Hold Reg.
V Memory, system (V)	106	V7620 – V7737 V7746 – V7777	3984 - 4063 4070 - 4095	4001	40001	Hold Reg.

Example 1: V2100 584/984 Mode

Find the MODBUS address for User V location V2100.

- 1. Find V memory in the table.
- 2. Convert V2100 into decimal (1088).
- 3. Add the MODBUS starting address for the mode (40001).

PLC Address (Dec.) + Mode Address

V2100 = 1088 decimal 1088 + 40001 = 41089

For Word Data Types		PLC Address (Dec.)	+	Appropriate	e Mode Addr	ess
Timer Current Values (V)	128	VO - V177	0 - 127	3001	30001	Input Reg
Counter Current Values (V)	128	V1000 - V1177	512 - 639	3001	30001	Input Reg
V Memory, user data (V)	1024	V2000 - V3777	1024 - 2047	4001	40001	Hold Reg.

Example 2: Y20 584/984 Mode

Find the MODBUS address for output Y20.

1. Find Y outputs in the table.

Outputs (Y)

Control Relays (CR)

Timer Contacts (T)

- 2. Convert Y20 into decimal (16).
- 3. Add the starting address for the range (2048).
- 4. Add the MODBUS address for the mode (1).

320

256

128

PLC Addr. (Dec) + Start Address + Mode

1

Example 3: T10
Current Value

484 Mode

Find the MODBUS address to obtain the current value from Timer T10.

- 1. Find Timer Current Values in the table.
- 2. Convert T10 into decimal (8).
- 3. Add the MODBUS starting address for the mode (40001).

PLC Address (Dec.) + Mode Address

1

T10 = 8 decimal 8 + 4001 = **4009**

44 + 3072 + 1 = 3117

-

For Word Data Types	PLC Address (Dec.)					+		Appropriate	e Mode Addr	ess
Timer Current Values (V)	128	VO	-	V177	0	-	127 🤇	3001	30001	Input Reg
Counter Current Values (V)	128	V1000	-	V1177	512	-	639	3001	30001	Input Reg
V Memory, user data (V)	1024	V2000	-	V3777	1024	-	2047	4001	40001	Hold Reg.

Example 4: C54 584/984 Mode

Find the MODBUS address for Control Relay PLC Addr. (Dec) + Start Address + Mode C54. C54 = 44 decimal

- 1. Find Control Relays in the table.
- 2. Convert C54 into decimal (44).
- 3. Add the starting address for the range (3072).
- 4. Add the MODBUS address for the mode

(1).				. \		
Outputs (Y)	320	YO - Y477	2048 - 2367	1	1	Coil
Control Relays (CR)	256	CO - C377 (3072) - 3551	1 (1)	Coil
Timer Contacts (T)	128	TO - T177	6144 - 6271	1	1	Coil